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STABILITY UNDER CONSTANTLY ACTING PERTURBATIONS, AND AVERAGING IN 
AN UNBOUNDED INTERVAL IN SYSTEMS WITH IMPULSES* 

V.SH. BBRB 

The question of the closeness of non-stationary solutions of the exact 
and averaged equations in an unlimited time interval is investigated for 
ordinary differential equations whose right sides contain generalized 
functions of time (generalized derivatives of functions of bounded 
variation). The appropriate assertions in the development of the method 
proposed in /l/ are derived from a special theorem on stability under 
permanently acting perturbations. The results obtained (more general in 
the case of equations with smooth coefficients then the assertions in 
/2, 3/) afford an apportunity for giving a foundation to the applicability 
of the averaging method to quasiconservative vibration impact systems /4/. 

We note that the question of the correspondence between solutions of 
the exact equations and the stationary solutions of the averaqe equations 
was investigated in /5/ (see /6/ alsoj for 
impulsive action. 

1. we shall use the following notation: R" is 
the element +E I?", I is the interval IO, m),B,(K) 
shall henceforth consider integrals of the form 

_ _ 
systems in standard form with 

a Euclidean n-space, Iz 1 is the norm of 
= {z: I E R", 1 x 1 Q K}, G = I x B, (K). We 

which are understood to be Lebesgue-Stieltjes integrals. We shall say with respect to the 
integrating function u(t) that u(~)E BU(J) if u(t) is a scalar function defined for TV J 
and possessing the following properties: 

1) u (t) is continuous on the right and is of limited variation in each compact sub- 
interval of the interval J; 

2) The discontinuities tr< 12 < . . . (tl > to > 0) of the function u(t) have the single 
limit point + 00. 

Functions defined on J with values in B,(K) continuous to the right and with the same 
points of discontinuity of the first kind as u(t) will be considered as = (Q. Then if 
f 0, 4 is a function defined in G with values in R” bounded in the norm, continuous in x 
uniformly with respect to t and having not more than a denumerable numberof ,points of dis- 
continuity of the first kind in t, the integral (1.1) exists. We note that with the above 
assumptions, the appropriate generalization of the Riemann-Stieltjes integral can be used in 
place of the Lebesgue-Stieltjes integral. Later, if the question of the existence of the 
integral (1.1) is not especially stipulated, we shall assume that the listed conditions are 
satisfied. 

For the function f(t,z) d f e ined in G and integrable with respect to us BU (J), we 
introduce 

Lemmal. Let the function f(t,x) be defined on G and continuous in 2 uniformly with 
respect to TV J.. Let the function 2 (b) which is continuous to the right with values in 
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B,(K) be a .function of bounded variation in each compact subinterval of Jandwith disconti- 
nuities at the same points as the function u(~)E B,(K). 
respect to lb(t). 

Let f(t, z(t)) be integrable with 
Then for any q>O there is an a> 0 such that 

Proof. By virtue of the conditions of the lemma for each q> 0 there can be a ij>O such 
that If (6 q) - I (:, 3 j < q/i for Iq-~,l< 8. We denote the piecewise-constant function with 
values in B,(K) for which l=(t)-zO(t)(<& :E [O,T] by z" (0, where in each interval whose 
length does not exceed one, the function z(t) takes on not more than k different values, where 
the number k depends only on 6.. Let zj (j = 1,. . ., k) be values of 9 (t) in the interval 1 t,- 
hl< 1. We set e = q&k). Then 

The last inequality holds for any t,, tn satisfying the inequality lt,-tt) (1, which 
indeed proves the lemma. 

2. We consider a differential equation in generalized functions in R” 

Dx (t) = X (t, 2) + R (t, o) Du (t) (24 
where the function X(t, x) and R(t, z) are defined in G, u(t)E BU(J),Dx (t) and Du(t) are 
generalized derivativesofthe functions a(t) and u(t) respectively. We understand the 
function x(t, to, io), that is continuous to the right , is of bounded variation in I and such 
that its generalized derivative in (i& T), TE 1 satisfies (2.1), to be a solution of (2.1) 
defined in the interval I with left end t satisfying the condition x(10) = XO. We know /?/ 
that the function z(t) is a solution of (2.1) in the interval I passing through (to,%) if 
and only if it satisfies the integral equation 

x (t) = x0 + i x ( 
t 

s, x (s)) ds + R (s, 5 (s)) du (s), t e 1 
1. i! 

where fox each function of bounded variation x(t) in I that is continuous to the right, the 
function X(t,x(t)) is integrable while R(t,z(t)) is integrable in I with respect to n (0, 
where the second integral is considered intheinterval (to,tl. The function z(t) as a solution 
of (2.2) evidently has discontinuities at the same points as does n (Q. 

In addition to (2.11, we consider an unperturbed ordinary differential equation in R” 

dyldt = x (t, y) (2.3) 
We assume that (2.3) has the solution $(t, to, b)($(tot to, &J)=_o), defined for all 1> 

&>O, which is contained, together with its certain p-neighbourhood (p>O), in the set G. 

Theorem 1. Let the function X(t, 2) satisfy the Lipschitz condition in x for xt%&(K), 
tE J with constant L, let the function R(t,r) be uniformly continuous in x with respect 
to in 1, and let the solution $(t,to,&,) of (2.3) be uniformly asymptotically stable. Then 
for any e>O (0< e<p) numbers ql(e),qa(e) exist for all solutions I(& to, z0) [e(& TV, x0} = 
a) of (2.1) defined for f)to with values in B,(K) and with initial data satisfying the 

inequality It0 - t0 1<q1 (e) and for all R (t, CZ), satisfying the inequality 
t* 

aup 
I$ ltrtlldfl ‘ 

R (t, 2) du (t) I< % (4, TV, ta E J, .Z E B, (4 

and the inequality 

holds for all t>to 

Ix (t, to, z. --Ip (b to, 50) I < e (2.4) 

Proof. we use the reasoning of Lemma 6.3 in Chapter 111 of /8/. Let y(t,to.s~) be the 
solution of (2.3) with the same initial condition as the solution x(&ton& of (2.1) . From 
the conditions of the thoerem we obtainthe inequality 

A(t) = L i A (s) d-s + F (t), F (t) = 1) R (s, x (s, to, so)) du (3) 1 

(A (t) = ‘;x (t, for xo) - Y (L ton 5; I) 



A well-known integral inequality (see /0/, say) yields 

A(t)< F(t) + L ’ exp(L(t -- s))F(s)ds 
s . 

Hence we obtain for to <<t< to -I- T 

By virtue of the uniform asymptotic stability of the solution q(t, to, &) of (2.31, numbers 

6<s and T >0 exist such that it follows from the inequality 1 z,, - E. I< 6 that 

I I/ 6. to, 20) - \p 0, t0, t) I < e/2, t 2 to! 
I y (to + T, to, a) - 9 (to + T, to* too) I < i3/2 (2.5) 

It follows from Lemma 1 that the number I can be selected in such a manner that the 
following inequlity is satisfied: 

A 0) < N2, to < t Q to + T (2.6) 

Then 

Ia 0, to, 4 - Ip 0, to, &I I < e/2 + 6/2 < e, to -S t Q to + T 

Furthermore, we obtain from (2.5) and (2.6) 

I .z (to + T, to, 20) -J, (t + T, to, &I I < 6 
The concluding part of the proof of Theorem 1 agrees completely with the concluding part 

of the proof of the above-mentioned Lemma 6.3. 

Remarks. lo. It was assumed in the formulation of the thoerem that the solution z(I,~,,,z~) 
is defined for t>, to and lies in B,(K). If the conditions of the local existence theorem for 
solutions of (2.1) are satisfied and S,(R) is sufficiently small for ZE B,(K), then the solution 
2 (t, to, %) with initial condition sufficiently close, in the norm, to the initial condition of 
the solution ~(t.to,&,) of (2.31, will be defined for all tat,, and will not emerge from the 
sphere B,(K). 

20 . If the solution $(t,t,,Eo) of (2.3) is uniformly asymptotically stable in part of the 
variables rp1,. ..,qk(k>n), then the inequality (2.4) in the assertion of Theorem 1 is replaced 
by the inequality 

3. We apply Theorem 1 to the problem of taking the average in an unbounded interval. 
We use the following scheme. The equation to be investigated in R" will be written in the 
form 

Dx (t) = R (t, I, e) Du (t. e) (3.1) 
where e is a small positive parameter , and it is shown that the limit equation 

‘! 
lim sup 
e-0 lk-t,l~l II R (s, x, e) du (s, e) - XEB,(K) , 

is valid, where X(t,s) is the right side of the averaged ordinary differential equation in 
P. This enables us to obtain corresponding assertions about taking the average in an un- 
bounded interval as a corollary of Theorem 1. For convenience we shall say that the right 
side of (3.1) converges integrally to X&x) as e-+0 if the limit Eq.(3.2) holds. 

We turn first to the differential equation in R” by fast and slow time in the standard 
form 

Dx (t) = eX (t?, T* x, e) Du (t),, P = et (3.3) 
where e is a small positive parameter that varies in the interval [O,eJ, the function X(t,a, 
s,e) with values in R"is defined for t= J,ZE B,(K), Ed 10, eJ, u(t)= BU(J) and, in addition, 

u (t) is bounded in J. 

Theorem 2. Suppose 
1) the function X (t,r, x* e) is uniformly continuous in each of the variables 2, s, a 

relative to the remaining variables; 
2) I X (t, T, cc, e) I < M < m, (t, I) E G, e E IO,. 4; 
3) uniformly for fE J the following limit exists: 

t-t= 
-~(s, r, r,O)du(s)=X(s,x),(z,~) fG 

4) the function X(T,X) satisfies the Lipschitz condition in I for ZE B,(K)JE J 
with constant L, and uniformly continuous in 1 relative to so B,(K); 
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5) the equation in R” 

dxldr = X (T, x) (3.4) 
is a uniformly asymptotically stable solution z = Ir,(r, i$, 1) (Ip(Eto, to, &I) = b) (uniformly 
asymptotically stable in parts of the variables XI,...,XR(~< n))* which together with its 
certain p-neighbourhood (p>O) is contained in the set G. 

Then for any ca,O<a<p numbers s, (a), 0 < al < 80 and b(a) exist wuch that for all 

O<e<el the solution 
which I zo - Eel < B(a) 

Proof. Making the 

where, for convenience, 

change of time T = 8~ in (3.31, we obtain 

l?x (2) = eX (t/e, z, .z, e) Du (x-/e) (3.5) 
x (T/e) is again denoted by X(T). We will show that the right side of 

(3.5) converges integrally to the function X(T, I) defined in condition 3) of the theorem. 
Hence and from Theorem 1 the assertion of the theorem will result. 

q~(&‘t~~ x0) of (3.3) , defined for 
satisfies'the inequality 

t > to and contained in B,(K), for 

I cp (t, to, 20) - Ip (at, to, Eo) I< a t > ta 

(I 'Pr 0, to, so) - $1 (6 to, &) I< a, i = 1, . . ., k), 

By virtue of the continuity of X@/e,r,x,e) in the fourth variable, that is uniform 
with respect to the remaining variables, it is sufficient to establish that for any 6>0 
for sufficiently small e 

We select a number q>O such that for 1~~ -fz I<q the following inequalities are 
satisfied 

Let g(~) be a peicewise-constant function defined in the interval [tl, ta1 (I tz - t1 I < 1) 
such that I T - g (T) I < q, T E [tl, t& Then 

where t, = 00 < u1 < . . . < a,, = tz. It remains to show that h< 6/(2n) for sufficiently small 
e. This follows from the limit equality lim A = 0 as e+O. The latter also follows from 
condition 3) of the theorem. 

We note that in the case when the solution *(et, to, &) of (3.4) is uniformly asymptotically 
stable in parts of the variables , it is necessary to use Remark Z" to Theorem 1. 

4. The method described enables the question of the closeness between solutions of exact 
and averaged equations in an infinite interval in systems with fast and slow variables to be 
investigated. For instance, we examine the following system of differential equations with a 
rapid phase: 

Dz (t) = eX (3, y. e) Dv (g). dy/dt = o (z) + eY (.z, 61, 8) (4.1) 
where o is a n-dimensional vector, y is a scalar variable, e is a small positive parameter 
that changes in the interval [O,e,l, and DZ (t), Du (g) are generalized derivatives of the functions 
x (0 and U(U). We assume that the function X(z, V,F) with values in R" and the scalar function 

Y (5, Y, 8) are periodic in the variable y with period Zn, while ~(8) is a scalar 2n-per- 
iodic function of bounded variation. Later conditions are imposed on the functions o(z)Y 

(2. I, 8) such that ~(u(t)) is a function of bounded variation. 

Theorem 3. Suppose 
1) the functions X(2, r,e), Y(z,~,e) are defined for ZE+(K), y~(-% m), 4~ 10,aOl, and 

continuous in the variables r,e uniformly relative to the remaining variables; 
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2) the function O(Z) satisfies the inequality O(Z)> C> 0 for ZEB+(X) where c is a 
certain constant, and the Lipschits condition in 1: for r=&(K) with constant L; 

3) a constant I4 exists such that 

I x (G Yv 8) I 6 M, I y (2, I> 8) I Q M. 2 E &G (a Y E (-00, m), 8 E to, &)I 

4) the function 

x (4 = gf x 6% I, 0) du (I) 
0 

satisfies the Lipschits 
5) the equation 

condition in z for ZEBU with constant L,; 

dx/& = x (z) (4.2) 
has a uniformly asymptotically stable solution z=+(T,:,,,EJ that belongs to the domain B,(K) 
together with its p-neighbourhood (p.>O). 

Then for any a,O<a<p numbers %(a) O<el<e, and p(a) exist such that for all O<e<e, 
the slow variable solutions of system (4.1) for which 1 Q-F+~I</~(~), satisfy the inequality 

I 5 (t, to, zol id - rp (et, to, Ed I < a, t >, to 
Proof. We make the changes r=et,a=ey in system (4.1). We obtain the system 

Dz(r)=eX(z, +, e)Dw(+), g=u(z)+eY(r,+, e) (4.3) 

It follows from conditions 2) and 3) of the theorem that for sufficiently small e the 
function a(@ is monotonic, and therefore, for sufficiently small e it is possible to take 
a as an independent variable instead of 'F. System (4.3) is written in the new time as 

(4.4) 

dr 
-= 

da -&+e+, $, F) 
where the functions Xl,(z,a/e,e),Y~(~,ale,e) possess the same properties as the corresponding 
functions without the subscript 1. It is seen that the right sides of system (4.4) converge 
integraily to the right sides of the system 

ds 
-= 

da 

which has the following form in time 

&I& = X (z), da/dT = w (I) 

The solution of system (4.6) corresponding to the solution 
evidently uniformly asymptotically stable in the variable z and 
of system (4.5) possesses this same property. Applying Theorem 
the statement of the theorem. 

(4.5) 

(4.6) 
z=$(z,lO,Eo) of (4.2) is 
the corresponding solution 
2 to system (4.4) we obtain 

Theorem 3 enables us to give a foundation to the applicability of the averaging method 
to quasiconservative vibration-impact systems since corresponding systems in /4/ results in 
the form (4.1). 
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